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Abstract: A new approach to the interpretation of residual dipolar couplings for the regular secondary
structures of proteins is presented. This paper deals with the analysis of the steric and chiral requirements
of protein secondary structures and establishes a quantitative correlation between structure periodicity
and the experimental values of the backbone residual dipolar couplings. Building on the recent interpretation
of the periodicity of residual dipolar couplings in R-helices (i.e., “dipolar waves”), a general parametric
equation for fitting the residual dipolar couplings of any regular secondary structure is derived. This equation
interprets the modulation of the residual dipolar couplings’ periodicity in terms of the secondary structure
orientation with respect to an arbitrary reference frame, laying the groundwork for using backbone residual
dipolar couplings as a fast tool for determining protein folding by NMR spectroscopy.

Introduction

The natural1 or induced2 anisotropy of nuclear spin interac-
tions permits the measurements of residual dipolar couplings
(RDCs), providing long-range structural information on the
relative orientations of secondary structure elements in bio-
macromolecules. Since their introduction, RDCs have found
several different applications in structural biology. In particular,
RDCs have been used for structure refinement as harmonic
constraints,3,4 the validation of NOE-based NMR and X-ray
structures,5 de-novo structure calculation in conjunction with
pseudocontact shifts,6 protein domain orientations and dynam-
ics,7,8 protein-protein, and protein-ligand binding studies9-11

and, finally, the identification of folds using homology models
or molecular fragment replacement.12

Dipolar couplings (full or residual) are diagnostic indicators
of the intrinsic periodicity found in protein structures. The
periodic patterns of dipolar couplings were first observed in
helical membrane proteins embedded in oriented lipid bilayers
studied by solid-state NMR13-15 and, in a recent report, Mesleh

et al.16 showed that these distinctive patterns can also be found
in weakly aligned samples ofR-helical proteins. These patterns,
named “dipolar waves”, are reminiscent of helical patterns
obtained by EPR spin-label experiments17 and by NMR
paramagnetic quenching using O2

18 and can be fitted by simple
sinusoids of periodicity 3.6. The periodicity of dipolar waves
in both solution and solid-state NMR spectra is related to the
secondary structure type, whereas the amplitude and the average
of the sinusoids can be directly linked to the orientation of the
helical domains with respect to the magnetic field.16,19 This
observation opens up the possibility of exploiting backbone
residual (or full) dipolar couplings for mapping both proteins’
secondary and tertiary structures through nonlinear fitting of
RDC data as a function of the residue number. Given the
availability of several new methods for weakly aligning both
soluble20 and membrane proteins,21-23 this approach would
provide a valuable tool for rapidly determining protein domain
orientations.

Because RDCs are very sensitive probes for both local
geometries and domain orientations, a correct fitting procedure
for the experimental data is crucial to extract both secondary
and tertiary information about protein structures. In the present
article, we present a parametric equation that describes the
oscillation of the residual dipolar couplings associated with any
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periodic secondary structure. Rigorous theoretical treatment was
used to derive this general formula that describes the value of
the residual dipolar couplings for each residue of the polypeptide
chain as a function of residue number. By using this approach,
it is possible to obtain a precise and quantitative fit for
experimental dipolar patterns. Although our mathematical model
can be applied to polypeptide (or polymer) conformations of
any periodicity, we show the fitting forR-helices,â-strands,
310-helices, andπ-helices.

Theoretical Basis

The regular structures of proteins can be described in terms
of repeating monomeric-unit conformations by specifying
Cartesian or polar coordinates with respect to an external
reference frame. Eyring transformation matrixes24 have proved
to be a useful method to describe the structural parameters of
regular secondary structures of macromolecules.25-28 Because
the value of the residual dipolar couplings depend only on the
orientation of the coupled nuclei with respect to the direction
of the static magnetic field, RDCs can be interpreted in a similar
way, using rotation matrixes in polar coordinates.

If we assume that a periodic element of a secondary structure
(anR-helix, 310-helix, π-helix, or â-strand) is initially oriented
with its principal axis aligned along theZ-axis of an arbitrary
Principal Axis System (PAS), which we will in turn assume to
be parallel to the direction of the static magnetic field, then the
components of the first amide bond vector,rbNH

1 , can be
described as

whereF is the angle that the projection of therbNH
1 vector on the

X-Y plane makes with theX axis,dNH is the proton-nitrogen
bond vector (∼1.07 Å29), andδ is the angle that therbNH

1 vector
makes with the chain axis. Also,F represents the angle of
rotation of the entire chain around its axis. Figure 1 depicts
these parameters for an idealR-helix.

The components of thenth vector (rbNH
n ) can be described by

rotating therbNH
1 bond around theZ axis of an angleR ) 2π(n

- 1)/T, whereT is the periodicity of the secondary structure
under analysis. This operation can be accomplished by the
matrix transformation

whereRZ is a right-handed rotation matrix around theZ axis.
For an idealR-helix oriented atθ andφ degrees with respect to
the PAS, the orientation of eachrbNH bond vector can be
determined by applying additional rotations ofθ andφ degrees
with respect to theY- and Z-axis, respectively. This is ac-

complished by the following matrix transformation

whereRY and RZ are the right-handed rotation matrixes that
rotate therbNH

n vector byθ andφ around theY- and theZ-axis,
respectively. The symbol * indicates that the vector components
are now referred to an orientation of the secondary structure
element atθ andφ angles with respect to the PAS.

Starting from the component of the firstrbNH bond vector,
the overall transformation can be described by the equation

Therefore, eq 1 provides the components of eachrbNH vector
with respect to the PAS as a function of the components of the
first amide bond. Using this approach, all the amide bond vectors
within the same secondary structure element can be univocally
described.

The magnitude of the residual dipolar coupling as a function
of the components of the rbNH bond vector can be expressed in
Cartesian coordinates as20

wherex, y, andz are the components of the bond vector,dNH is
the proton-nitrogen bond distance, andDa andR are the axial
component and the rhombicity of the alignment tensor, respec-
tively. Substituting the components of therbNH

n * vector from eq
1 into eq 2, it is possible to write the residual dipolar couplings
as a function of both residue number and structure orientation
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rbNH
1 ) (dNH‚sin(δ)‚cos(F)

dNH‚sin(δ)‚sin(F)
dNH‚cos(δ) )

rbNH
n ) RZ(R)‚ rbNH

1

Figure 1. Schematic representation of the geometric parameters which are
used to define the dipolar coupling as a function of the secondary structure
element orientation. The components of eachrbNH bond in the polypeptide
chain are determined by rotating the first amide bond around the helix axis
n-1 times the repeat angle (100° for R-helices∼180° for â-strands).

rbNH
n * ) RZ(φ)‚RY(θ)‚ rbNH

n

rbNH
n * ) RZ(φ)‚RY(θ)‚RZ(R)‚ rbNH

1 (1)

δNH ) Da(2z2 - x2 - y2

dNH
2 ) + 3

2
DaR(x2 - y2

dNH
2 ) (2)

δNH ) kIcos2(R + F) + kIIsin2(R + F) + kIII sin(R + F)cos

(R + F) + kIVcos(R + F) + kVsin(R + F) + kVI (3)
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where the residue numbern and the periodicityT of the
secondary structure are incorporated into the angleR ) 2π(n
- 1)/T. The coefficients for eq 3,kI, kII , kIII , kIV, kV, andkVI are
functions of the anglesδ, θ, andφ (Table 1).

Using simple trigonometric transformations, eq 3 can be
rearranged as follows

This equation can be further simplified and transformed into a
linear combination of two phase-shifted sinusoids

whereAI andAII are the amplitudes, andæI andæII the phases

of the two sinusoids.AV is an additional term, independent of
the residue number and the periodicity (n andT). The values
of the amplitudes, the phases, andAV expressed as functions of
the coefficients of eq 3 are reported in Table 2.

This new parametric equation describes the theoretical beha-
vior of residual dipolar couplings for any periodic regular secon-
dary structure of periodicityT and directly links the modulation
of their periodicity to their three-dimensional orientations. In
particular, this new mathematical treatment makes it possible
to fit â-strand structures, which together withR-helices are the
most common motifs in proteins. The qualitative and quantita-
tive agreement of our results with simulated and experimental
residual dipolar couplings for the different secondary structure
elements is reported in the following section.

Figure 2. Absolute values of the amplitudesAI andAII and averagesAV of the RDC pattern as plotted from eq 5 and as functions of the anglesθ andφ for:
an idealR-helix (a), a 310-helix (b), aπ-helix (c), and for an antiparallelâ-strand (d).

Table 1. Mathematical Expressions of the Coefficients kI to kVI of
Eq 3

kI ) 2‚Dasin2δ‚sin2θ - Dasin2δ‚cos2θ + 3/2‚DaR‚sin2δ‚cos2θ‚cos2φ
kII ) -Dasin2δ - 3/2‚DaR‚sin2δ‚cos2φ
kIII ) -6DaR‚sin2δ‚sinφ‚cosφ‚cosθ
kIV ) -6Dasinδ‚cosδ‚sinθ‚cosθ + 3DaR‚sinδ‚cosδ‚sinθ‚cosθ‚cos2φ
kV ) -6DaR‚sinδ‚cosδ‚sinφ‚cosφ‚sinθ
kVI ) 2‚Dacos2δ‚cos2θ - Dacos2δ‚sin2θ + 3/2‚DaR‚cos2δ‚sin2θ‚cos2φ

δNH ) (kI - kII

2 )cos[2(R + F)] + kIII

2
sin(2(R + F)) +

kIVcos(R + F) + kVsin(R + F) + kVI + kI + kII

2
(4)

δNH ) AI‚sin[4π
T

(n - 1) + æI] + AII‚sin [2π
T

(n - 1) +

æII ] + AV (5)

Table 2. Mathematical Expressions of the Amplitudes and Phases
of the Two Sinusoids of Eq 5

AV ) kI + kII + 2VI

2

AI ) kI - kII

2sinæI

AII ) kIV

sin æII

æI ) 2F + arctan(kI - kII

kIII )
æII ) F + arctan(kII

kV)
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Results

Application of Eq 5 to R-Helices.Using arbitrary values of
Da and R (Da ) -13.6 Hz andR ) 0.56), we calculated the
dependence of the absolute values of the amplitudesAI andAII ,
and AV for an idealR-helix as a function ofθ and φ in the
ranges of 0e θ e 180° and 0e φ e 360° (see Figure 2a).
From the surface plots of Figure 2a, it is apparent that the first
term AI of eq 5 is negligible for a broad range ofθ and φ,
whereas the remaining termsAII andAV are rather significant.
This is also apparent from Figure 3a, where the first term of eq
5 is plotted as a function of residue number. The termAI (solid
line) has a relatively low weight in the equation, while the
second term,AII (broken line) is the dominating term. The fitting
of the residual dipolar couplings with and without the first term
leads to similar results. This is illustrated in Figure 3b, where
eq 5 is plotted as a function of the residue number for a helix
oriented atθ ) 45° and φ ) 45°. In fact, since for an ideal
R-helix the angle isδ ≈ 15.8°, sin2δ is a relatively small

number, andAI is approximately equal to 0. Therefore, eq 5
for ideal R-helices becomes

Note that in this case, the termAV is approximately equal to
kVI and corresponds to the average values of the residual dipolar
couplings. This equation is identical to the “dipolar wave”
sinusoid proposed by Opella and co-workers for fitting residual
or full dipolar couplings of polypeptides in an ideal helical
conformation.16,19Because the value of periodicityT for an ideal
helix is 3.6 residues/turn, the equation depends only on three
parameters: the average (AV), the amplitude (A), and the phase
(æ). These three parameters are functions of the orientation of
the helix with respect to the PAS (θ and φ) and the angleδ
(see Tables 1 and 2).

For orientations parallel (θ ) 0°) or perpendicular (θ ) 90°)
with respect to the PAS, the first term of eq 5 becomes
significant and the curve deviates from a perfect sinusoidal. This
is clearly illustrated in Figures 4a, whereAI is plotted as a
function of theθ angle for different values ofφ. For θ ) 90ï

andφ ) 0ï, AI reaches its maximum value. Figure 4, parts b
and c, shows the oscillations of the two terms of eq 5 as
functions of the residue number for different values ofθ, with
φ fixed at 45°. When the helix is oriented perpendicularly to
the magnetic field (θ ) 90°), AI andAII have the same order of
magnitude and the RDC pattern is not represented by a simple
sinusoid (top of Figure 4, parts b and c). Whenθ ) 0°, the
second term of eq 5 cancels out (AII ) 0) and the RDC pattern
follows the behavior indicated by the first term (bottom of Figure
4, parts b and c). Here, the dipolar pattern is best fitted by eq
5.

The sinusoidal fitting of the RDC pattern not only provides
information about the orientation of the helix with respect to
the magnetic field, it also indicates the phase of rotation of the
helix about its axis. The latter information is obtained by
extrapolating the value of the angleF from the mathematical
expression of the parameteræ reported in Table 2. Changes in
the RDC pattern and the helical wave for different values of
the angleF are shown in Figure 5. This type of analysis is crucial
for residue assignments in both weakly and strongly oriented
helical proteins.30

Application of Eq 5 to 310-Helices and π-Helices. The
analysis carried out for idealR-helices is also valid for both
310-helices andπ-helices. However, unlike the case for ideal
R-helices, for 310-helices the term inAI is almost zero for all
the values ofθ andφ. Here, eq 6 represents a good approxima-
tion of the dipolar pattern. On the other hand, the fitting of
dipolar patterns forπ-helices, which are not common in nature,
requires eq 5. In fact, as withR-helices, the termAI becomes
significant, particularly for orientations close to parallel or
perpendicular.

Application of Eq 5 to â-Strands. â-strands in extended
conformation are constituted by a flat polypeptide chain with
backbone torsion angles of:æ ) 180°, ψ ) 180°, ω ) 180°.31

In reality, natural occurringâ-strands present either a right-
hand twist (antiparallel) or a left-hand twist (parallel) around
the strand axis, with the antiparallel conformation being the

(30) Marassi, F. M.; Opella, S. J.Protein Sci.2003, 12, 403-411.
(31) IUPAC-IUB Biochemistry1970, 9, 3471-3479.

Figure 3. (a) First sinusoid term (solid line) and second sinusoid term
(dashed line) of eq 5 plotted as a continuous function of the residue number
for anR-helix (a) and (b), a 310-helix (c) and (d), aπ-helix (e) and (f), and
a â-strand (g) and (h) all oriented atθ ) φ ) 45°. The periodicityT and
the angleδ are respectively:R-helix T ) 3.6 residues/turn andδ ) 15.8°;
310 helix T ) 3.0 residues/turn,δ ) 4.9°; π-helix: T ) 4.4 residues/turn,
δ ) 33.4°; andâ-strand: T ) 2.07 residues/turn,δ ) 94.0°. In (b), (d), (f),
and (h), eq 5 is plotted (solid line) and the predicted RDC values (black
dots) are reported corresponding to a sampling “rate” of 1 coupling per
residue.

δHN ) AII‚sin[2π
T

(n - 1) + æII ] + AV (6)
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preferred one.32 The torsion angles are:æ ) -139°, ψ ) 135°,
andω ) -178° for the antiparallel, andæ ) -119°, ψ ) 113°,
and ω ) 180° for the parallel conformation.31 However, in
naturally occurring globular proteins, the distribution of the
torsion angles around these values is quite broad.32 These
deviations are due to the stabilization energy derived from
hydrogen bond formation between the strands, and result in
periodicities (T) slightly higher (antiparallel) or lower (parallel)
than the theoretical 2.0.32-34 In addition, naturally occurring
â-strands often deviate from linearity, presenting remarkable
curvatures of the strand axis. All of these factors make the
analysis of the periodic dipolar pattern for these structures rather
challenging. Nonetheless, by employing eq 5 it is possible to
interpret the periodic behavior ofâ-strands in terms of both
local secondary structure and orientation with respect to a
reference frame.

For example, we analyzed the case of an antiparallelâ-strand
polypeptide withδ ) 94° andT ) 2.03 residues/turn. As with
theR-helices, we used arbitrary values ofDa andR to simulate
the residual dipolar couplings. The surface plots generated from
eq 5 for the absolute values of the amplitudesAI andAII , and
AV as functions of the anglesθ andφ in the range 0° e θ e

180° and 0° e φ e 360° are reported in Figure 2d. The
antiparallelâ-strand polypeptide behaves differently from the
R-helices, with the first term of eq 5 becoming more significant
(Figure 2a). This is apparent in Figure 3G, where each of the
two terms of eq 5 are plotted as a function of residue number
for an antiparallelâ-strand with an orientation ofθ andφ at
45°. Figure 3H shows that when plotted as a continuous
function, eq 5 describes the periodic pattern of this antiparallel
â-strand.

Nonetheless, particular care must be taken when analyzing
â-strands. We found that when simulating the values of residual
dipolar couplings for differentâ-strand periodicities at a fixed
orientation (θ andφ) and keepingδ andF constants, the pattern
of the residual dipolar couplings is affected significantly by the
value of the periodicityT, whereas it is only slightly affected
by changingδ. This is illustrated in Figure 6, parts A and B,
where the predicted residual dipolar couplings of aâ-strand
oriented at anglesθ ) 45°, φ ) 45° andF ) 10° are reported.

Since naturally occurringâ-strands exhibit substantial devia-
tions from the idealâ-strand conformation withT andδ values
unknown a priori, the fitting of experimental data sets with eq
5 requires the optimization of all six parameters:AI, AII , T, æI,
æII, andAV. This may lead to degenerate solutions with different
combinations of parameters that are still good fits of the
experimental data.

Comparison of Back-Calculated Residual Dipolar Coup-
lings versus Values Predicted by Eq 5 forR-Helices, 310-
Helices, π-Helices andâ-Strands. To show the quantitative
fitting of the dipolar couplings, we have back-calculated RDC
patterns starting from idealR-helix, 310-helix, π-helix, and
â-strand built with MOLMOL.35 In Figure 7, the results of the
back-calculations of RDCs are compared with the data predicted
by eq 5. The agreement forR-helices, 310-helices, andπ-helices
is shown in Figure 7, parts A-C.

Figure 7D shows an identical calculation performed using
an ideal antiparallelâ-strand structure (æ ) -139°, ψ ) 135°,
ω ) -178°).31 The dashed line interpolates the back-calculated
RDC from a PDB file generated with MOLMOL oriented with
anglesθ ) 325°, φ ) 330°, andF ) 175°. The optimal fitting
(solid lines) for theâ-strand is observed for a valueT ) 2.035.
Deviations of some of the back-calculated points with respect
to the theoretical values are attributable to local deviations from
the ideality of the structure used to generate the RDCs.(32) Chothia, C.J. Mol. Biol. 1973, 75, 295-302.

(33) Arnott, S.; Dover; S. D.J. Mol. Biol. 1967, 30, 209.
(34) Schellman, G. N.; Schellman, C.Proteins1964, 2, 1. (35) Koradi, R.; Billeter, M.; Wuthrich, K.J. Mol. Graphics1996, 14, 51-55.

Figure 4. (a) Value of the amplitudeAI as a function ofθ for different
values ofφ. (b) and (c) Theoretical patterns of RDCs of aR-helix for three
tilt anglesθ ) 0°, 45° and 90° (andφ ) 45°) as predicted by eq 5; (b)
plots of the first term (solid lines) and the second term (dashed lines) of eq
5 scaled by the averageAV; (c) plot of eq 5 (dashed lines) and predicted
theoretical RDCs (black squares).

Figure 5. Phase shifts of the helical waves for an idealR-helix as a function
of the angleF.

Figure 6. Changes in the RDC pattern for different values of the periodicity
T (a), and the angleδ (b). The polypeptide chain is oriented at anglesθ )
45°, φ ) 45° andF ) 10°. In (a) δ ) 94°. In (b) T ) 2.03 residues/turn.
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Application of Eq 5 to Fitting the Dipolar Patterns of the
C-Terminal KH Domain of Heterogeneous Nuclear Ribo-
nucleoprotein K (KH3). As an example, we applied eq 5 to
fit the dipolar pattern of the C-terminal KH domain of Hnrnp
K (KH3), whose structure was recently solved by Tjandra and
co-workers.36 Because this protein adopts aâRRââR fold with
both R-helices andâ-strands present in the structure, it serves
as an ideal test for our approach. Figure 8 shows the experi-
mental residual dipolar couplings for KH3 obtained in a liquid
crystalline medium.36 The fitting obtained using eq 5 shows that
the dipolar patterns for the differentâ-strands (â1, â2, andâ

3) have higher frequencies (or low periodicities), while the
patterns for theR-helices (R1, R2, andR3) show the charac-
teristic 3.6 periodicity. The accuracy of the fitting was estimated
using the root-mean-square deviation (rmsd) of the experimental
RDCs from the ones calculated using eq 5. Forâ1, â2, andâ3
domains, we obtained rmsd values of 1.34, 0.14, and 0.43 Hz,
respectively, whereas for the threeR-helical domain (R1, R2,
and R3), the obtained rmsd values were 2.72, 3.23, and 3.76
Hz, respectively.

Discussion

Using a rigorous approach, we have derived a general formula
for the interpretation of the distinct periodic pattern presented
by the dipolar couplings for regular structures of proteins. The
novelty introduced by this approach is the extension of the
concept of “dipolar waves” toâ-strands, which are widely
distributed among protein folds. Equation 5 is a linear combina-
tion of two sinusoids, whose amplitudes reflect (a) the different
types of secondary structures, and (b) the different orientations
of the secondary structure elements with respect to the static
magnetic field.

For ideal R-helices, our theoretical approach confirms the
previous observations made by Mesleh et al.16 In this case, using
eq 5 we show that the behavior of the RDC pattern can be
accurately explained by a sinusoid of periodicity 1/T (second
term in eq 5). Indeed, eq 5 is also capable of fitting dipolar
patterns ofâ-strand conformations. UnlikeR-helices, where one
can provide an estimate of the type of secondary structure by
simple visual inspection of the dipolar pattern, the pattern of
â-strands is not easily recognizable. In this case, the dipolar
patterns can be fitted using the linear combination of two
sinusoids as described by eq 5, with frequencies 2/T and 1/T,
respectively. The difficulties in interpreting the residual dipolar
coupling for â-strands using simple “dipolar waves” can be
understood by analyzing the dipolar oscillations using the
theorem of discretely sampled data.37 In fact, for a complete
representation of a sine wave, it is necessary to have two sample
points per cycle (Nyquist critical frequency,fc ) 1/2∆, where
∆ is the sampling interval). For the backbone residual dipolar
couplings,∆ is equal to 1 and the Nyquist critical frequency is
0.5. Because an idealR-helix hasT ) 3.6, the “sampling” of
the residual dipolar coupling is within the bandwidth defined
by the Nyquist frequency and the pattern is easily recognizable.
On the contrary, forâ-strands the periodicity is lower than the
Nyquist frequency and the oscillating dipolar pattern does not
appear as a wave of periodicityT ≈ 2 (see Figure 3H).

The fitting of dipolar patterns forâ-strands also poses some
challenges. In fact, naturally occurringâ-strands are generally
short (6-10 residues32) and often present deviations from
linearity, making the analysis of their periodicity more cumber-
some. Nonetheless, the application of eq 5 to the fitting of
experimental data from KH3 shows a remarkable agreement
between the theoretical and experimental points, making this
method very well suited for determining the relative three-
dimensional orientation of protein secondary structure elements.
Although eq 5 is not applicable to bent structures in its present
form, we are currently working to implement our approach to
accurately describe curved and kinked helices and strands whose
axes deviate from linearity. However, it should be mentioned

(36) Baber, J. L.; Libutti, D.; Levens, D.; Tjandra, N.J. Mol. Biol. 1999, 289,
949-962. (37) Marple, S. L.Digital Signal Processing; Englewood Cliffs: N. J., 1987.

Figure 7. Back-calculated (black squares) and predicted (open circles)
RDCs forR-Helix (a), 310-helix (b), π-helix (c), and aâ-strand (d). Black
squares represent RDC values back calculated from: (a) an idealR-helix
oriented atθ ) 45°, φ ) 45°, T ) 3.6 residues/turn,δ ) 15.8° andF )
45°; (b) a 310-helix oriented atθ ) 45°, φ ) 45°, T ) 3.0 residues/turn,δ
) 4.9° andF ) -31°; (c) aπ-helix oriented atθ ) 45°, φ ) 45°, T ) 4.4
residues/turn,δ ) 33.4° and F ) 25°; and (d) a theoretical antiparallel
â-strand (æ ) -139°, ψ ) +135°, ω ) -180° 31) oriented atθ ) 45°, φ

) 45°, F ) 45°. In this case, the best fitting has been obtained withT )
2.034 residues/turn andδ ) 95.6°. Open circles represent RDCs calculated
from eq 5. RMSDs between the back calculate and predicted RDC values
are (a) 0.300 Hz, (b) 0.119 Hz, (c) 0.646 Hz, and (d) 0.490 Hz.

Figure 8. Fitting of the experimental dipolar couplings for of C-terminal
KH Domain of heterogeneous nuclear ribonucleoprotein K (KH3) using
eq 5.
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that while curved helices are widely distributed in globular
proteins, idealR-helices are expected to be more common in
membrane protein structures.38

The parametric eq 5 is also able to fit other less common
helical conformations, namely 310-helices andπ-helices. For 310-
helices, the first term of eq 5 is close to zero and the fittings of
the RDC patterns result in an almost pure sinusoidal curve
(Figure 2b). Forπ-helices on the other hand, theAI term in eq
5 is not negligible (Figure 2c).

Because this method is sensitive to both different secondary
structure elements and slight distortions of the bond vectors, it
can also be used as a tool to establish the ideality of the
secondary structure elements. Though, we should point out that
additional complications in the analysis of RDCs arise from
the inevitable errors in the experimental measurements as well
as the “structural noise” introduced by the refinement process
for structure calculations.

In summary, the parametric eq 5 extends the concept of
pattern recognition to any secondary structure, making it possible
to “assemble” secondary structure domains into tertiary folds.
A major advantage of using dipolar pattern analysis over RDC
constraints for individual bond vectors is the obvious reduction
of the ambiguity intrinsic in the vector orientation that charac-
terizes residual dipolar couplings.19 While the value of a residual
dipolar coupling for an individual bond vector is compatible
with infinite positions of the vector on the surface of “taco
shaped” cones,39 the steric and chiral requirements of the
secondary structure restrict the number of possible orientations
for each individual vector within the cone itself. This effect is
due to theδ angles thatrbNH bond vectors have in the secondary
structures (R-helices,â-strands etc.), which cause therbNH vectors
to be nonparallel. In fact, although parallel bond vectors would
have identical values of the residual dipolar couplings (i.e.,
identical orientations with respect to the PAS), slight deviations
introduce dipolar coupling oscillations. Therefore, only specific
orientations will simultaneously satisfy the residual dipolar
couplings and the geometry imposed by the secondary structure.

From this point of view, the use of dipolar patterns to determine
protein topology is conceptually similar to the approach
proposed by Prestegard and co-workers,40 e.g., proteins are
considered to be an ensemble of rigid domains that can be
assembled through the use of dipolar couplings.

Conclusions

In this work, we derived a parametric equation for a
quantitative interpretation of dipolar couplings in proteins
weakly aligned in magnetic fields. This theoretical analysis
represents an exact mathematical solution for fitting RDC
patterns for any periodic secondary structure. Such accurate
fitting of the RDC pattern is crucial for extracting both precise
local secondary structure parameters and the orientation of the
structural fragments with respect to an external reference frame.
This analysis can be easily extended to strongly aligned systems
such as membrane proteins aligned in oriented lipids, providing
a valuable tool for recognizing secondary structure elements
and for directly linking their dipolar patterns to the three-
dimensional structure. In addition, this method can be used to
identify local distortions or deviation of secondary structures
from ideality.

Finally, this model is independent of the nature of the nuclei,
and in principle, can be applied to any repeating polymer chain
with a regular structure.
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